

Personal Website: <http://www.cuishiawen.com/>

cswoffice@163.com

LinkedIn: www.linkedin.com/in/shaun-shuaiwen-cui

+86 182-0192-3138 (CHN)

Github: <https://github.com/Shuaiwen-Cui>

+65 83071903 (SG)

EXPERTISES & INTERESTS - IoT-based Digitalization, Automation and Intelligentization

- **Distributed Computing & Intelligence:** Edge Intelligence Framework, Federated Learning, Graph Neural Networks, Reinforcement Learning, Multi Agent System, Game Theory
- **Sensing, Processing, Control, Optimization:** Real-time Signal Processing, Data Analytics, Digital Twins, Control Theory, Single/Multiple Objective Optimization
- **IoT System & Embedded Intelligence:** Edge–fog–cloud Architectures, Resource-efficient Embedded AI
- **Structural Health Monitoring:** System Identification, Vibration Analytics, Condition Assessment
- **Smart Built Environment & Smart Home:** AI-powered Spatial Digitalization, User-intent Analytics, and Personalized Content Delivery

EDUCATION – Graduation Date (Expected): Jul 2026 - Thesis Submission; Dec 2026 – Defense; Feb 2027 - Graduation

Nanyang Technological University

Singapore, SG

Ph.D. Candidate - Civil Engineering

08/2022-02/2027 (Expected)

- Embedded System ➤ Signal Processing ➤ Internet of Things ➤ Digital Twin
- Edge/Cloud Computing ➤ Distributed AI ➤ Structural Health Monitoring

Tongji University

Shanghai, CHN

M.Eng. - Architectural and Civil Engineering

09/2018-06/2021

Tongji University

Shanghai, CHN

B.Eng. - Major in Civil Engineering, Minor in Mathematics and Applied Mathematics

09/2014-07/2018

- Mathematics ➤ Physics and Mechanics ➤ Engineering ➤ Computer Science

SKILL SETS

- **Languages:** Chinese (native); English (skilled); Japanese (beginner)
- **Programming:** C/C++; Python; Matlab
- **AI Framework:** Tensorflow, Pytorch
- **Embedded System:** STM32/ HAL/ STM32CUBE; ESP32/ESP_IDF; Keil, PlatformIO; FreeRTOS; Linux
- **Edge Intelligence:** CMSIS-DSP/NN; X-Cube-AI; ESP-DSP/DL; Tensorflow Lite; Edge Impulse
- **Internet of Things:** MQTT; EMQX; Home Assistant
- **Computer Aided Design:** Auto CAD; Rhinoceros/Grasshopper; Sketchup; Revit; EasyEDA; KiCAD
- **Mechanical Analysis:** Ansys; OpenSees; Particle Flow Code
- **Digital Twin and Platforms:** Autodesk Forge; BIMFace

SELECTED PUBLICATIONS & PATENTS (FIRST/CORRESPONDING AUTHOR)

- **Journal Article:** Cui, S., Fu, H., Shen, W. & Fu, Y. (2026) **Edge-to-Cloud Computing and Intelligence in IoT-based Structural Health Monitoring: A Comprehensive Review.** *Advanced Engineering Informatics*, 71, 104300. <https://doi.org/10.1016/j.aei.2025.104300> [Core: Ubiquitous/Ambient Computing and Intelligence in IoT SHM systems]
- **Journal Article:** Cui, S., Fu, Y.*., Xia, Y., Zhang Q., & Li, S. (2026) **A Class-Lab-Field Pedagogical Framework for Structural Health Monitoring using Ultra-Low-Cost Wireless IoT Prototypes.** *IEEE Transactions on Education.* (Under Review) [Core: Ultra-Low-Cost Wireless AIoT Node and Network, SHM Application]
- **Journal Article:** Xu, J., Cui, S.*., Cai, W., Zhang, J., Zhu, M., & Cai, E. (2026) Stratigraphic Modelling and Probabilistic Parameter Estimation from Sparse Borehole Data via Bayesian Inference and LightGBM. *Georisk.* (Under Review) [Core: Sparse Data Field Modelling based on Bayesian Inference, Regression/Prediction based on Decision Tree]

- **Patent (No. 10202502426R, SG):** Adaptive Triggering Mechanism for Time-Series Data Sensing on Edge Devices. [Core: Hardware-Software Join Design, Time Series Data Trigger Sensing Parameter Optimization]
- **Journal Article:** Cui, S., Fu, Y. *, Fu, H., Yu, X. & Shen, W. (2025) **Smart Adaptive Trigger Sensing Powered by Edge Intelligence and Digital Twin for Energy-Efficient Wireless Structural Health Monitoring.** *Mechanical System and Signal Processing, Volume 241, 2025, 113537.* <https://doi.org/10.1016/j.ymssp.2025.113537> [Core: Bayesian Optimization, Edge NN, Feedback Control, Trigger Parameter Optimization, Energy Efficiency Optimization]
- **Conference Paper:** Cui, S., Yu, X., & Fu, Y.* (2025). **Smart adaptive triggering strategy for edge intelligence enabled energy-efficient sensing.** In *Proceedings of the 13th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-13)*, pp. 609–616. Graz, Austria: Verlag der TU Graz. (**Best Conference Paper Award 1st/202**) [Core: Bayesian Optimization, Edge NN, Feedback Control, Trigger Parameter Optimization, Energy Efficiency Optimization]
- **Journal Article:** Cui, S., Hoang, T., Mechitov, K., Fu, Y. * & Spencer, B. (2025). **Adaptive Edge Intelligence for Rapid Structural Condition Assessment using a Wireless Smart Sensor Network.** *Engineering Structures, 326, 119520.* <https://doi.org/10.1016/j.engstruct.2024.119520> [Core: Gaussian Process Regression, Stochastic Process Control, Edge Intelligence, Data-driven Real-time Anomaly Detection]
- **Journal Article:** Cui, S., Tan, Y. *, & Lu, Y. (2020). **Algorithm for generation of 3D polyhedrons for simulation of rock particles by DEM and its application to tunneling in boulder-soil matrix.** *Tunnelling and Underground Space Technology, 106, 103588.* <https://doi.org/10.1016/j.tust.2020.103588> [Core: GJK Geometry Collision Detection]
- **Patent (No. 202011585928.2, China):** Random 3D Polyhedron Generator Based on a Hybrid Extension Method. [Core: GJK Geometry Collision Detection]

WORK & INTERNSHIP EXPERIENCE

Arcplus Group - ArcTron Data & Innovation Technology Co., Ltd. Shanghai, CHN
Product Manager, R&D 08/2021-07/2022

- Led the prototype development of ArcOS (building operating system) GUI for interactive project configuration.
- Spearheaded the modularization of the ArcOS workflow for project configuration.
- Engaged in ArcOS-API design for data importation (from IoT & IBMS) and exportation (for applications).
- Engaged in algorithm development for ArcOS, e.g., energy conservation, invasion detection.

SYSTEM ENGINEERING & PROTOTYPING

I - AIoT MCU Node Prototyping - Interface between the Physical and Cyber Worlds Singapore
Uses: IoT System Frontend – Perception, Computation, Storage, Communication, Actuation. 08/2023-Now
Features: Low Cost, Energy Efficient, General Purpose / Domain Specific, Edge AI Enabled.

- **Project A – Arduino IoT Wireless Sensor Network** – Pedagogical Uses & Idea Verification
 - Arch: MCU (Uno R4 WiFi) + IMU (MPU6050) + Storage + RF Communication (nRF24L01)
 - Features: Phone + MQTT Control; High Precision Time Synchronization (FTSP)
- **Project B – NexNode** – General Purpose MCU AIoT Node & Network
 - Architecture: Main Control + Perception + Actuation + Communication + Power
 - Tools: STM32/HAL/STM32CUBE; ESP32/ESP-IDF/ESP-DL; FreeRTOS
 - Sensing: T. & H. (DHT11), Acc. (ADXL362&355& MPU050), Camera (CV5640)
 - Communication.: Bluetooth, WIFI, 4G, ESPNOW; MQTT
 - Software: Physical / Driver / Middleware / Application Layer
- **Project C – LiftNode** – Structural Health Monitoring Specific MCU AIoT Node & Network
 - Based on NexNode, Structural Health Monitoring Specific
 - ADXL355, 20-bit low noise low power high resolution accelerometer
 - Built-in Online/Offline Sensing and System Identification Functions

II - AIoT Cloud Server Development – Coordination for the IoT Nodes Singapore
Uses: IoT System Backend - Coordination, Storage, Computation, Analysis, Interfacing. 08/2023-Now
Features: Light-weight, General Purpose / Domain Specific, Cloud AI Enabled.

- **Project A – NexHub** – General Purpose IoT Cloud Platform for NexNodes
 - Tech Stack: Web - Nginx, MQTT – EMQX, Database – MongoDB & InfluxDB
 - Coordination: Orchestrating IoT nodes to ensure efficient and reliable system operation.
 - Broker and Interface: facilitating communication between heterogeneous IoT nodes and providing standardized access for applications.

- Storage, Computation and Analysis: supporting long-term data management, complex computational tasks, and insight extraction for decision-making.

➤ **Project B – LiftHub** – Structural Health Monitoring Oriented Cloud Platform for LiftNodes

- Based on NexHub.

- High Performance Measurement: capturing and synchronizing sensing data.

- Accurate System Identification: modeling and characterizing structural dynamics.

- Effective Damage Assessment: detecting anomalies and evaluating conditions.

III – Distributed Computing and Intelligence Framework – for Edge Intelligence on MCU

Uses: Enabling Efficient Computation and AI on Resource-constrained Edge Devices.

Features: Resource-aware, Cross-platform, lightweight, efficient, modularized & layered.

➤ **Project A – TinyAuton** – General Purpose Edge Intelligence Enabling Framework

- TinyToolbox: Platform-related Functions, Configurations, Time Management, Evaluation

- TinyMath: Mathematic Operations, including Vector and Matrix Operations

- TinyDSP: Digital Signal Processing Algorithms & Functions

- TinyAI: AI Components for Onboard AI Deployment

➤ **Project B – TinySHM** – SHM Oriented Edge Intelligence Enabling Framework

- High Performance Measurement: capturing and synchronizing sensing data.

- Accurate System Identification: modeling and characterizing structural dynamics.

- Effective Damage Assessment: detecting anomalies and evaluating conditions.

Singapore

08/2023-Now

ALGORITHM RESEARCH & INNOVATION

Smart Adaptive Trigger Sensing with Edge Intelligence and Digital Twin for Energy-Efficient Wireless Structural Health Monitoring

Singapore

04/2024-04/2025

➤ **Problem:** Event-triggered sensing in wireless SHM commonly relies on fixed thresholds and durations, lacking adaptivity to dynamic environments and leading to an inherent trade-off between missed events, false triggers, and energy efficiency on resource-constrained edge devices.

➤ **Solution:** Proposed a Smart Adaptive Triggering Mechanism (SATM) based on a feedback control framework, integrating Bayesian Optimization for adaptive parameter tuning, lightweight neural networks for onboard inference, and Digital Twin technology to accelerate optimization.

➤ **Execution:** Designed a two-stage deployment strategy with digital-twin-based pre-optimization and onboard fine-tuning; developed and deployed lightweight CNN and DNN models on MCU-level sensor nodes; integrated the framework into low-power wireless platforms (LiftNode) for real-time edge execution.

➤ **Outcome:** Achieved approximately a 30% improvement in trigger detection performance (F-beta) compared with conservative manual settings, while reducing computational overhead by 2–3 orders of magnitude, enabling reliable and energy-efficient wireless SHM deployments. This work led to a granted patent (SG Patent No. 10202502426R) titled “Adaptive Triggering Mechanism for Time-Series Data Sensing on Edge Devices”. The results were presented at SHMII-13 (Graz, Austria), where the conference paper received the Best Paper Award (1st out of 202 submissions).

Adaptive Edge Intelligence for Rapid Structural Condition Assessment Using a Wireless Smart Sensor Network

Singapore

03/2023-06/2024

➤ **Problem:** Conventional wireless SHM systems rely on centralized processing and offline analysis, resulting in delayed structural condition assessment and limited adaptability under resource-constrained sensing environments.

➤ **Solution:** Proposed an adaptive edge intelligence framework that integrates Gaussian Process Regression (GPR) for structural response modeling and Statistical Process Control (SPC) for condition monitoring, enabling rapid and data-driven structural condition assessment at the sensor-network level.

➤ **Execution:** Designed a wireless smart sensor network with onboard computing capability; implemented GPR models for local structural behavior estimation and SPC-based decision rules for condition assessment; deployed the framework on edge sensor nodes and validated it using experimental structural response data.

- **Outcome:** Demonstrated that the proposed edge-intelligent system enables timely and reliable structural condition assessment while significantly reducing communication overhead, offering a scalable and efficient alternative to conventional centralized SHM architectures. The results were presented at EMI 2023, Atlanta, USA.

Algorithm for Generation of 3D Random Morphology of Granules and Its Application in TBM Tunneling

Shanghai, CHN
09/2018-06/2021

- **Problem:** Realistic simulation of TBM tunneling in boulder-soil strata is limited by the lack of efficient methods to represent irregular, non-convex boulder geometries and their interactions with surrounding ground.
- **Approach:** Proposed a 3D random polyhedron generation framework based on a hybrid extension method, incorporating a two-step convexity control strategy and an improved GJK (Gilbert–Johnson–Keerthi) algorithm for non-convex collision detection, enabling reliable geometric modeling for DEM simulations.
- **Execution:** Implemented the algorithms in a GUI-based application for automatic polyhedron generation; designed and fabricated a scaled TBM physical model using 3D printing and servo motors; conducted DEM-based parametric studies using the generated polyhedrons to simulate boulder and ground motion.
- **Outcome:** Demonstrated that ground motion magnitude is mainly governed by boulder size, while boulder motion is strongly influenced by morphology, position, and orientation; showed that advance boulder blasting and grouting can mitigate potential geohazards. Results were presented at an international tunneling conference (CTTU202, Melbourne).

AWARDS & COMPETITIONS

Best Conference Paper Award (1 st /202), SHMII-13, Graz, Austria.	09/2025
First Place, 3-Minute Thesis Competition, School of CEE, NTU	03/2025
Excellent Graduate & Excellent Dissertation of Tongji University	06/2021
Shimao-Jiangxin-China Scholarship for Academic Excellent (Top 3% in China)	11/2020
Third Prize in the 15th China Post-Graduate Mathematical Modelling Contest (Top 30%)	12/2018
Honorable Mention in the Interdisciplinary Contest in Modelling (Top 20%)	2016&2017
Third Prize of Tongji Scholarship of Excellence (Top 20% of the school)	2015&2017
Second Prize in the 5th Future Aircraft Designing Contest of Tongji University (3rd/22)	11/2016
First Prize in the 6th Applied Mechanics Innovation Contest of Tongji University	04/2016
Third Prize in the 7th China Undergraduate Mathematical Contest (Top 15%)	11/2015